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12-Tungstophosphoric acid immobilized on £-Fe2O3@SiO2

core­shell nanoparticles was used as novel solid acid catalyst for
the synthesis of various bis(indolyl)methanes and ¢-functional-
ized indoles in water. The catalyst can be recovered simply using
an external magnetic field and reused several times without
appreciable loss of its catalytic activity.

Introducing of new, efficient, and strategically important
processes, which are environmentally benign and lead to greater
structural variation in a short period of time with high yields and
simple workup procedure is an important goal of synthetic
organic chemistry and one of the key paradigms of modern drug
discovery. Recent tendencies have been focused on the replace-
ment of homogeneous catalysts with heterogeneous analogs,
which can be easily recovered from the reaction mixture thereby
eliminating the need for separation through distillation or
extraction.

In the field of heterogeneous catalysis, solid-supported
Keggin type heteropolyacids (HPAs), such as 12-tungstophos-
phoric acid, H3PW12O40 (PW), arouse much attention for they
not only have strong Brønsted acidity, but they can also be
recovered from reaction media and reused. Among the supports
that can be used to immobilize HPAs, acidic or natural substance
like SiO2, TiO2, or active carbon is suitable and the Keggin
structure of HPAs is retained upon adsorption onto their surfaces
over a broad range of loading. However, although these solid-
supported HPAs can be recovered by filtration or precipitation,
lower activity or selectivity compared to homogeneous ones
are commonly detected due to steric and diffusion factors. In
addition, weak interaction between HPA and supports results in
its leaching from the support surface in polar reaction media.1

In the attempt to resolve such problems, nanomagnetically
recoverable HPA-based catalyst was first synthesized in our
laboratory and used as novel special heterogeneous HPAs in
Mannich type reactions in water.2 A simple ferric oxide, £-
Fe2O3, was used as the magnetic material for its low price,
simplicity, and nontoxicity. It was prepared through chemical
coprecipitation, and subsequently was coated with silica shell
by the Stöber process,3 that is the hydrolysis of tetraethyl
orthosilicate (TEOS) in an ethanol solution containing water
and ammonia. After the surface coating by SiO2, magnetic
solid (designed as £-Fe2O3@SiO2) was used as support for
immobilization of PW. The obtained catalyst (designed as
£-Fe2O3@SiO2­PW) was collected by a permanent magnet
and dried (Scheme 1).2,4 Typically, a loading at ca. 31wt%
PW (1.1mmol g¹1) was obtained. It was found that the £-
Fe2O3@SiO2­PW catalyst exhibits several attractive features for
the synthesis of fine chemicals. The magnetic properties make

possible the complete recovery of the catalyst by means of an
external magnetic field, which is an important advantage of the
use of a magnetically separable catalyst.5 Furthermore, nano-
scale supports have high surface area resulting in high catalyst
loading capacity, high dispersion, and outstanding stability.
Also, they do not suffer from porosity and other problems
associated with the transport of reactants and/or products to and
from the catalytic sites. As a result, the immobilization of HPAs
on the silica-coating magnetic core turned out to be beneficial,
giving rise to an invariant high activity and improved numbers
of recycle and reuse in comparison to immobilization on
conventional solid supports. These findings encourage us to
extend the catalytic application of £-Fe2O3@SiO2­PW for the
synthesis of useful building blocks and/or biologically active
compounds in water.

Among the different protocols for the synthesis of useful
building blocks, we selected the synthesis of 3-substituted
indoles, particularly 3-alkylindoles and bis(indolyl)methanes,
because of their very high impact as synthons for the preparation
of various bioactive compounds.6,7

Optimized experiments were carried out by using different
amounts of £-Fe2O3@SiO2­PW catalyst in the model reaction
(Scheme 2) and results were summarized in Table 1. Control
experiment showed that the substrates hardly reacted together
in the absence of catalyst (Table 1, Entry 1). £-Fe2O3@SiO2

showed poor effect on the yield of the product (Table 1,
Entry 2). When using the Fe2O3@SiO2­PW as catalyst, a
significant improvement was observed (Table 1, Entry 3). As
can be seen, by using of 0.05 g of Fe2O3@SiO2­PW as catalyst,
the product was obtained in excellent yield within short reaction
time while more than 0.05 g of the catalyst had no effect on
product yield (Table 1, Entries 3­7). Therefore, 0.05 g of
catalyst was selected as the best catalyst loading in further
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investigations. The catalytic activity of 0.05 g of Fe2O3@SiO2­
PW catalyst was compared with Fe2O3@SiO2 and unsupported
PW on unit weight basis (Table 1, Entries 8 and 9). The results
showed that Fe2O3@SiO2 was not efficient in the reaction and
the yield was much lower than that obtained using the
Fe2O3@SiO2­PW catalyst. However, when PW was used as
the catalyst, a moderate yield of the product was obtained
(Table 1, Entry 9). Nevertheless, the reaction proceeded in a
homogeneous system, which makes catalyst recovery very
difficult.

In order to exam the reusability of the catalyst, the model
reaction was carried out by using 0.5 g of catalyst and the
experiments were properly scaled up. At the end of reaction,
bis(3-indolyl)phenylmethane was obtained as pinkish solid
product. The reaction mixture was centrifuged and water was
removed from the mixture to leave residue. The product was
dissolved in acetonitrile and the catalyst easily separated from
the product by attaching an external magnet onto the reaction
vessel, followed by decantation of the product solution. The
catalyst could be recovered and subsequently reused several
times without significant loss of activity (Figure 1). To check the
leaching of PW into the reaction mixture, the model reaction was
carried out for 1 h under selected reaction conditions. Then, the
reaction was stopped, catalyst and product were separated by
centrifugation, and the filtrate was added to a mixture of indole
and benzaldehyde as model substrates and stirred for 1 h. Only
15% of the corresponding product was obtained indicating
negligible PW leaching into the reaction mixture. This obser-
vation confirmed that the reaction was catalyzed heterogene-
ously. In addition, the content of PW into filtrate was evaluated
quantitatively by inductively coupled plasma atomic emission
spectroscopy (ICP-AES), which showed 12.2% of the initial
content was leached into reaction mixture. Nevertheless, the
yield of product was not substantially modified (10% difference)
after the fourth run.

To evaluate the scope and generality of this new protocol,
various aldehydes and ketones, as well as amines and ¢-
dicarbonyl compounds were tested as the substrates (Scheme 3).
At first, we investigated the electrophilic substitution of indole
with various aldehydes and ketones to probe their behavior
under the current catalytic conditions (Scheme 4a).8 The catalyst
has been applied successfully for the condensation of hetero-

aromatic aldehydes 2b and 2c to afford the corresponding
bis(indolyl)methanes in excellent yields (Table 2, Entries 2 and
3). It is also worth mentioning that the reaction is general and is
applicable to cyclic and aromatic ketones (Table 2, Entries 4 and
5) to afford the corresponding product in high yields, although
longer reaction times were required for their conversion. 2-
Methylindole (1b) reacted well with 2a and 2d to give the

Table 1. Catalytic activity of £-Fe2O3@SiO2­PW in the
reaction of benzaldehyde and indole as model substratesa

Entry Catalyst
Time
/min

Yield
/%b

1 ® 25 0
2 £-Fe2O3@SiO2 (0.01 g) 25 14
3 £-Fe2O3@SiO2­PW (0.01 g) 25 51
4 £-Fe2O3@SiO2­PW (0.02 g) 25 62
5 £-Fe2O3@SiO2­PW (0.03 g) 25 80
6 £-Fe2O3@SiO2­PW (0.05 g) 25 98
7 £-Fe2O3@SiO2­PW (0.1 g) 25 98
8 £-Fe2O3@SiO2 (0.05 g) 25 21
9 PW (0.05 g) 25 48

aReaction conditions: indole (2mmol), benzaldehyde (1mmol),
H2O (5mL), room temperature. bIsolated yields. Figure 1. Reusability of £-Fe2O3@SiO2­PW (after 30min).
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corresponding products 5f and 5g in excellent yields (Table 2,
Entries 6 and 7). Under these reaction conditions, indole-3-acetic
acid (1c) on reaction with 2a gave 5h in good yield (Table 2,
Entry 8).

Considering the synthetic utility of ¢-diketones and ¢-
ketoesters, their reactivity with indole and various aldehydes has
also been investigated (Scheme 4b).8 As expected, trimolecular
condensation reaction of 1a with 2a and ¢-dicarbonyl com-
pounds 3a­3c afforded the corresponding products 6a­6c in
excellent yields (Table 2, Entries 9­11). These experimental
conditions could successfully be extended to 2-nitrobenzalde-
hyde (2f) giving product 6d with satisfactory yield (Table 2,
Entry 12).

A Mannich-type reaction of secondary amine, formalde-
hyde, and indole was chosen as another way for the synthesis of
¢-functionalized indoles derivatives (Scheme 4c).8 As the first
case, the reaction of 1a, 4-methylpiperidine (4a), and formal-
dehyde (2g) was performed under optimized conditions
(Table 2, Entry 13). The corresponding product 7a was obtained
in good yield. Increasing the quantity of catalyst from 0.05 to
0.1 g improved the result to a greater extent while further
addition of catalyst had no noticeable effect on the yield or
reaction time (Table 2, Entries 13­15). Thus, 0.1 g of catalyst
was used for the synthesis of compounds 7b and 7c in good
yields (Table 2, Entries 16 and 17).

Based on these results, it is expected that the £-
Fe2O3@SiO2­PW will be new promising catalysts in the
synthesis of biologically active indole derivatives.
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